Кпд мышц человека что такое

Коэффициент полезного действия мышц

Во время работы в мышце в зависимости от интенсивности изменений обмена веществ возрастает образование тепла. Часть энергии, освобождающейся при химических процессах без превращения в тепло, непосредственно переходит в кинетическую энергию сокращения мышцы. Остальная большая часть энергии химических процессов превращается в тепловую, поэтому мышцы при сокращении выделяют тепло.

Коэффициентом полезного действия (КПД) называется отношение энергии, затраченной на работу мышц, ко всей энергии, произведенной в мышцах во время работы. КПД мышц человека колеблется в среднем от 15 до 25%, КПД мышц ног — от 20 до 35%, а рук — от 5 до 15%.

При тренировке он увеличивается у человека до 25-30% и даже до 35%, а у животных — до 50%,

Анаэробной и аэробной фазам биохимических процессов соответствуют две фазы теплообразования: начальная и восстановительная, или отставленная.

Начальная фаза вызывается биохимическими анаэробными процессами, ведущими к сокращению мышцы. При одиночном сокращении мышцы 65-70% тепла приходится на период сокращения и 30-35% — на период расслабления (запаздывающее анаэробное теплообразование). Небольшое количество тепла выделяется во время возбуждения, предшествующего сокращении). При кратковременных тетанусах на запаздывающее теплообразование приходится 20% всего тепла. В аэробных условиях в атмосфере кислорода в начальной фазе образуется столько же тепла, сколько его образуется без кислорода, и на начальную анаэробную фазу приходится 40% всего тепла, выделяемого мышцей в присутствии кислорода.

Так как при пассивном укорочении и небольшом растяжении мышцы выделяется тепло, то часть тепла в начальной фазе зависит от изменения эластичности мышц.

Восстановительная фаза теплообразования вызывается главным образом окислительными процессами. Только 25% тепла приходится на запаздывающее анаэробное теплообразование. Всего в этой фазе образуется 60% тепла, выделяемого мышцей в присутствии кислорода. Во время этой фазы происходит окисление части молочной кислоты и восстановление остальной ее части в гликоген. В нормальных условиях мышечной деятельности бескислородное и кислородное расщепление веществ и их ресинтез происходят одновременно. Поэтому при нормальном кровообращении длительная работа малой интенсивности сравнительно долго не сопровождается заметным уменьшением содержания сахара в крови и накоплением в ней молочной кислоты.

При ауксотоническом сокращении выделяется на 40% больше тепла, чем при изометрическом. Чем больше напряжение мышцы при изометрическом сокращении, тем больше теплообразование. При изотоническом сокращении без груза теплообразование очень мало. Оно меньше, чем при изометрическом сокращении. Но если мышца сокращается с грузом, то теплообразование тем больше, чех: больше масса груза.

Общее теплообразование в обе фазы больше начального при одиночных сокращениях в 1,5 раза, а при тетанических в 2,5 раза. Следовательно, при неизменной начальной фазе увеличивается восстановительная фаза. Это свидетельствует о более экономном использовании веществ и энергии при тетанусе.

источник

6.2.6. Энергетика мышцы. Системы восстановления атф, коэффициент полезного действия и тепловой выход мышцы

Источником энергии мышечного сокращения служит энергия гидролитического расщепления АТФ с помощью фермента миозин-АТФ-фазы до АДФ и неорганического фосфата (3 молекулы АТФ на 1 «гребок»). Расщепление 1 моля АТФ обеспечивает около 48 кДж. 50-60% этой энергии превращается в тепло и лишь 40-50% идет на работу мышц, причем лишь 20-30 % превращается в механическую энергию, остальное идет на работу ионных насосов и окислительного восстановления АТФ.

Системы восстановления атф

Восстановление АТФ осуществляется сразу же после ее расщепления до АДФ. Этот процесс осуществляется при участии 3 энергетических систем.

1) фосфогенная система, где используется энергия креатинфосфата (система АТФ-КрФ). Эта система обладает наибольшей скоростью действия, мощностью, но незначительной емкостью, поэтому используется в самом начале работы или при работе максимальной мощности (но не более 5 с). Это анаэробный процесс, т.е. он протекает без участия кислорода.

2) система окислительного фосфорилированияразворачивается по мере удлинения времени работы (через 2-3 мин). Если интенсивность работы мышц не максимальна, то их потребности в кислороде удовлетворяются полностью. Поэтому работа может выполняться на протяжении многих часов. Необходимая для ресинтеза АТФ энергия поступает в результате окисления жиров и углеводов, причем чем больше интенсивность, тем меньше вклад жиров. Это аэробный процесс.

3) гликолитическая система, где восстановление АТФ идет за счет энергии анаэробного расщепления углеводов (гликогена, глюкозы) до молочной кислоты. Во время этой реакции скорость образования АТФ в 2-3 раза выше, а механическая работа в 2-3 раза больше, чем при длительной аэробной работе. Однако, емкость гликолитической системы в тысячи раз меньше, чем окислительной (хотя в 2,5 раза больше фосфогенной. Поэтому такая система может обеспечивать работу на время от 20 с до 1-2 мин. и заканчивается она значительным накоплением молочной кислоты.

Коэффициент полезного действия

Необходимо заметить, что и хемомеханическая реакция в системе актомиозиновых мостиков, и все последующие процессы идут с потерей энергии в форме теплоты.Коэффициент полезного действия (КПД) мышцы как механи­ческой машины (здесь надо оговориться, что мышца не только механическая машина, но и основной обогреватель организма, поэтому ее тепловой выход не бесполезен) может быть вычислен по формуле:

где А – совершаемая работа, а Q- тепловой выход мышцы.

Тепловой выход мышцы

Тепловой выход мышцы (Q)сложен. Во-первых, существует выход теплоты при изометрическом напряжении мышцы, при задержке ее сокращения стопо­ром. Этот выход называюттеплотой активации. Если на фоне этого состояния мышца с грузом освобождается от стопора и, сокращаясь, поднимает груз, то она выделяет дополнительную теплоту —теплоту укорочения, пропорциональную механической работе(эффект Фенна). По-видимому, пере­мещение нитей с подключением в работу все новых (заряженных энергией) мостиков способствует высвобождению дополнительной энергии (и механиче­ской, и тепловой).

В условиях свободного подъема груза теплота активации (соответстствующая фазе напряжения сухожилия) и теплота укорочения сливаются, образуя так называемое начальное теплообразование. После сокращения (одиночного или краткого тетануса) в мышце возникаетзадержанное теплообразование, которое связано с процессами, обеспечивающими ресинтез АТФ, оно длится секунды и минуты. Если рассчитывать КПД мышцы по начальному теплообра­зованию, то он составит примерно 50-60% (для оптимальных условий стиму­ляции и нагрузки). Если же вести расчет КПД исходя из видов теплопродук­ции, связанных с данной механической работой, то КПД составит примерно 20-30% (КПД мышц млекопитающих падает при адаптации к холоду, что способствует усилению теплопродукции в организме).

источник

Режимы сокращений мышечных волокон (одиночное и тетаническое мышечные сокращения)

Формы и типы мышечного сокращения.

Когда на мышцу действует какая- либо внешняя сила своим однократным изменением, мышца сокращается на определенную величину. Когда мышца достигает максимума укорочения, она сейчас же начинает расслабляться, т.е. удлиняться. Мышца сокращается тем скорее и тем интенсивнее, чем она больше отдохнула, чем выше ее температура. Мышца при сокращении не только укорачивается, но и утолщается. В одиночном мышечном сокращении можно выделить 3 последовательно протекающих периода (рис..).

В зависимости от частоты и силы раздражения мышца может проявлять различные режимы сокращения: режим одиночного и режим тетанического сокращений (рис. ).

7. Работа мышц. Закон средних нагрузок .

Обычно при оценке деятельности мышц учитывают только производимую ею внешнюю механическую работу. В наиболее простом случае — при подъеме груза — работа мышцы (А), согласно законам механики, может быть измерена произведением веса груза (Р) на высоту подъема (h) и выражена в кгм:

Расход энергии и КПД при работе мышцы. Величина внешней работы мышцы не может дать точных представлений об общем расходе энергии, т.к. часть ее превращается в тепло. При выполнении любой работы, как внутренней, так и внешней, часть энергии неизбежно превращается в тепловую. Вследствие этого общий расход энергии (G) есть сумма расхода, идущего на механическую работу (W), и расхода на образование тепла (H):

Очень важно выяснить, какая часть общих энергетических трат идет на выполнение работы и какая теряется в виде тепла, т.е. выяснить коэффициент полезного действия (КПД) мышечного двигателя. КПД есть отношение величины произволимой работы к общим энергетическим тратам.

Измерения показывают, что КПД мышц человека может достигать 25-30%. Это значит, что только 1/4 всех энергетических трат мышцы идет на выполнение внешней механической работы, остальные же 3/4 теряются в виде тепла. Следует сказать, что КПД мышцы сравнительно высок; КПД самых совершенных машин намного ниже.

КПД не является величиной постоянной; он зависит от условий деятельности мышцы, в частности, от величины нагрузки и от скорости сокращения.

Наибольшую внешнюю работу мышца способна произвести при некоторых средних нагрузках. Это явление получило название закона средних нагрузок. Очевидно, и КПД мышцы будет наиболее высоким при средних нагрузках, при которых внешняя механическая работа, совершаемая ею, является наибольшей.

КПД в значительной мере зависит и от скорости сокращения. Наибольшая внешняя работа и наиболее высокий КПД получаются при некоторых средних скоростях работы.

Особенно снижают КПД чрезмерно высокие скорости сокращения. Понижение производительности работы при увеличении скорости сократительного акта связано главным образом с тем, что мышцы обладают инерцией и внутренним трением (вязкостью). Чем быстрее совершается сокращение, тем сильнее внутреннее трение, тем большая часть энергии идет на его преодоление, тем ниже КПД. При слишком медленном сокращении КПД снижается в связи с тем, что часть энергии идет не на сокращение, а на поддержание достигнутой степени укорочения мышцы.

8. Регуляция напряжения мышцы.

Для регуляции мышечного напряжения используются три механизма:

Регуляция числа активных ДЕ;

Регуляция режима работы ДЕ;

Регуляция временной связи активности ДЕ.

Регуляция числа активных ДЕ:

Чем больше активных ДЕ, тем больше напряжение развивает мышца. Число активных ДЕ определяется интенсивностью возбуждающих влияний, которым подвергаются мотонейроны со стороны более высоких уровней ЦНС. При слабых возбуждающих влияниях импульсная активность возникает лишь в низкопороговых, малых мотонейронах. В основном это медленные ДЕ. По мере усиления возбуждающих влияний в активность вовлекаются все более крупные, высокопороговые ДЕ. Малые ДЕ активны при любом напряжении мышцы, тогда как большие ДЕ активны лишь при сильных мышечных напряжениях.

Регуляция режима работы ДЕ:

Чем выше частота импульсации мотонейрона, тем большее напряжение развивает ДЕ и тем значительнее вклад в общее напряжение мышцы. Особенна значительна роль этого механизма в быстрых ДЕ.

Регуляция временной связи активности ДЕ:

Напряжение мышцы зависит от того — как связаны во времени импульсы посылаемые разными мотонейронами данной мышцы. Синхронно или асинхронно. При утомлении ДЕ возбуждаются синхронно.

При мощных кратковременных сокращениях мышцы синхронизация активности ДЕ играет важную роль, влияя на скорость развития напряжения, то есть на величину “градиента силы” (взрывная сила).

В зависимости от степени мышечного напряжения, развиваемого при разных формах двигательной активности (ходьба, бег, прыжок) включаются различные ДЕ: при малых мышечных напряжениях (0 — 20% от максимума) функционируют низкопороговые ДЕ типа S (МО), при средних

Рис. Рекрутирование ДЕ различного типа в зависимости от степени развиваемого мышечного напряжения при ходьбе, беге и прыжке.

мышечных напряжениях (20 — 50% от максимума) — ДЕ типа FR (БОГ), при мощных мышечных напряжениях (св. 50% от максимума) — ДЕ типа FF (БГ) (рис. ).

На рис. представлена предположительная модель рекрутирования двигательных единиц обусловленного потребностями в мощности данного задания. Рекрутирование начинается слева (при 0 % пула) и продолжается до тех пор, пока не будет реккрутировано достаточное количество единиц для производства мощности, необходимой чтобы выполнить задание. Например, для производства достаточного количества мощности, чтобы выполнить бег, необходимо рекрутировать около 48% двигательных единиц пула.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8889 — | 7572 — или читать все.

85.95.179.227 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Мышечные ткани. Строение и функции мышечного волокна. Преобразование энергии при мышечном сокращении. КПД мышечного сокращения

Мы́шечными тка́нями называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Они обеспечивают перемещения в пространстве организма в целом, его частей и движение органов внутри организма и состоят из мышечных волокон.

Мышечное волокно представляет собой вытянутую клетку. В состав волокна входят его оболочка — сарколемма, жидкое содержимое — саркоплазма, ядро, митохондрии, рибосомы, сократительные элементы — миофибриллы, а также содержащий ионы Са 2+ , — саркоплазматический ретикулум. Поверхностная мембрана клетки через равные промежутки образует поперечные трубочки, по которым внутрь клетки проникает потенциал действия при ее возбуждении.

Функциональной единицей мышечного волокна является миофибрилла. Повторяющаяся структура в составе миофибриллы называется саркомером. Миофибриллы содержат 2 вида сократительных белков: тонкие нити актина и вдвое более толстые нити миозина. Сокращение мышечного волокна происходит благодаря скольжению миозиновых филаментов по актиновым. При этом перекрывание филаментов увеличивается и саркомер укорачивается.

Главная функция мышечного волокна— обеспечение мышечного сокращения.

Преобразование энергии при мышечном сокращении. Для сокращения мышцы используется энергия,освобождающаяся при гидролизе АТФ актомиозином,причем процесс гидролиза тесно сопряжен с сократительным процессом. По количеству выделяемого мышцей тепла можно оценить эффективность преобразования энергии при сокращении.. При укорочении мышцы скорость гидролиза повышается в соответствии с ростом производимой работы. освобождаемой при гидролизе энергии достаточно для обеспечения только совершаемой работы, но не полной энергопродукции мышцы.

Коэффициент полезного действия (кпд) мышечной работы (r) представляет собой отношение величины внешней механической работы (W) к общему количеству выделенной в виде тепла (Е) энергии:

Наиболее высокое значение кпд изолированной мышцы наблюдается при внешней нагрузке, составляющей около 50% от максимальной величины внешней нагрузки. Производительность работы (R) у человека определяют по величине потребления кислорода в период работы и восстановления по формуле:

где 0,49 — коэффициент пропорциональности между объемом потребленного кислорода и выполненной механической работой, т. е. при 100% эффективности для выполнения работы, равной 1 кгсм (9,81 Дж), необходимо 0,49 мл кислорода.

Двигательное действие / КПД

Ходьба/23-33%; Бег со средней скоростью/22-30%; Езда на велосипеде/22-28%; Гребля/15-30%;

Толкание ядра/27%; Метание/24%; Поднятие штанги/8-14%; Плавание/ 3%.

4. Изотонический режим работы мышц. Статическая работа мышц.

Изотонический режим (режим постоянного тонуса мышцы) наблюдается при отсутствии нагрузки на мышцу, когда мышца закреплена с одного конца и свободно сокращается. Напряжение в ней при этом не изменяется. Так как при этих условиях величина нагрузки Р = 0, то механическая работа мышцы также равна нулю (А = 0). В таком режиме работает в организме человека только одна мышца — мышца языка.

Статическая работа не предполагает сильного напряжения, однако в некоторых случаях статическая работа мышц может быть очень напряженной, например при удержании штанги, при некоторых упражнениях на кольцах или параллельных брусьях. Такая работа требует одновременного сокращения всех или почти всех волокон мышц и может продолжаться лишь очень короткое время. При динамической работе поочередно сокращаются различные группы мышц, причем некоторые мышцы работают то динамически, производя движение в суставе, то статически, обеспечивая на некоторое время неподвижность костей того же сустава. Степень напряжения мышц может быть различной.

Статическая работа утомляет скелетную мускулатуру больше, чем динамическая.

5. Общая характеристика системы кровообращения. Скорость движения крови в сосудах. Ударный объем крови. Работа и мощность сердца.

К системе кровообращения относятся сердце и сосуды — кровеносные и лимфатические.. Сердце млекопитающих четырехкамерное. Кровь движется по двум кругам кровообращения.

функции всех элементов сердечно-сосудистой системы: 1) трофическая – снабжение тканей питательными веществами; 2) дыхательную – снабжение тканей кислородом; 3) экскреторную – удаление продуктов обмена из тканей; 4)регуляторную – перенос гормонов, выработка биологически активных веществ, регуляция кровоснабжения, участие в воспалительных реакциях.

При движении крови по сосудам различают линейную и объемную скорость кровотока.

Линейная скорость кровотокаопределяется суммарным сечением сосудистой системы. Она максимальна в аорте — до 50 см/сек и минимальна в капиллярах — около нуля. В венозном отделе сосудистой системы линейная скорость вновь возрастает. Линейная скорость в полых венах в два раза меньше, чем в аорте и равна примерно 25 см/мин.

Объемная скорость кровотока — это количество крови, протекающее через общее сечение сосудистой системы в единицу времени. Она одинакова во всех отделах сосудистой системы крови.

Время полного кругооборота крови — это то время, за которое кровь проходит через большой и малый круги кровообращения. При 70-80 сокращениях сердца в минуту полный кругооборот крови происходит приблизительно за 20-23 сек.

Движение крови в организме: аорта – 500-600 мм/c, артерии – 150-200 мм/c, артериолы – 5 мм/c, капилляры – 0,5 мм/c, средние вены – 60-140 мм/c, полые вены — 200 мм/c. Гипертония – повышенное АД. Гипотония – пониженное АД.

Систолический объем крови. Объем крови, нагнетаемый каждым желудочком в магистральный сосуд (аорту или легочную артерию) при одном сокращении сердца, обозначают как систолический, или ударный, объем крови.

Работа, совершаемая сердцем, затрачивается на преодоление сопротивления и сообщение крови кинетической энергии.

Рассчитаем работу, совершаемую при однократном сокращении левого желудочка.

Vу – ударный объем крови в виде цилиндра. Можно считать, что сердце поставляет этот объем по аорте сечением S на расстояние I при среднем давлении р. Совершаемая при этом работа равна:

На сообщение кинетической энергии этому объему крови затрачена работа:

где р – плотность крови;υ – скорость крови в аорте. Таким образом, работа левого желудочка сердца при сокращении равна:

Эта формула справедлива как для покоя, так и для активного состояния организма, но эти состояния отличаются разной скоростью кровотока.

6. Уравнение Пуазейля. Понятие о гидравлическом сопротивлении кровеносных сосудов и о способах воздействия на него.

Уравнение Пуазёйля— закон, определяющий расход жидкости при установившемся течении вязкой несжимаемой жидкости в тонкой цилиндрической трубе круглого сечения.

Согласно закону, секундный объёмный расход жидкости пропорционален перепаду давления на единицу длины трубки (градиенту давления в трубе) и четвёртой степени радиуса (диаметра) трубы:

Где Q — объемный секундный расход жидкости; R — радиус трубопровода; p1-p2— перепад давлений на трубке; n—коэффициент трения; L— длина трубки.

Закон Пуазёйля работает только при ламинарном течении и при условии, что длина трубки превышает так называемую длину начального участка, необходимую для развития ламинарного течения в трубке.

Гидравлическое сопротивление прямо пропорционально длине сосуда и вязкости крови и обратно пропорционально радиусу сосуда в 4-й степени, то есть больше всего зависит от просвета сосуда , а также от состояния стенок сосудов и от их эластичности.

Так как наибольшим сопротивлением обладают артериолы , общее периферическое сопротивление сосудов(ОПСС) зависит главным образом от их тонуса. Различают центральные механизмы регуляции тонуса артериол (нервные и гормональные влияния)и местные (миогенная , метаболическая и эндотелиальная регуляция).

На артериолы оказывают постоянный тонический сосудосуживающий эффект симпатические нервы . Основные гормоны, в норме участвующие в регуляции тонуса артериол, — это адреналин и норадреналин .

Миогенная регуляция сводится к сокращению или расслаблению гладких мышц сосудов в ответ на изменения трансмурального давления; при этом напряжение в их стенке остается постоянным. Тем самым обеспечивается ауторегуляция местного кровотока — постоянство кровотока при меняющемся перфузионном давлении.

Метаболическая регуляция обеспечивает расширение сосудов при повышении основного обмена (за счет выброса аденозина и простагландинов) и гипоксии (также за счет выделения простагландинов).

Дата добавления: 2014-11-20 ; Просмотров: 1408 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Коэффициент полезного действия в работе человека

Сравнение увеличения затрат энергии с увеличением тяжести работы показывает, что величина затрачиваемой энергии за вычетом основного обмена всегда больше совершаемой человеком «полезной» механической работы. Причина такого несоответствия заключается прежде всего в том, что при превращении химической энергии питательных веществ в работу значительная часть энергии теряется в виде тепла, не переходя в механическую энергию. Некоторая часть энергии расходуется на поддержание статических напряжений, которые только частично учитываются при подсчете совершенной человеком механической работы. Каждое движение человека требует и статических и динамических напряжений, причем соотношение тех и других при различных работах различно. Так, поднятие груза с высоты 1 м на высоту 1,5 м при выпрямленном туловище требует меньшей затраты энергии, чем поднятие такого же груза с высоты 0,5 м на высоту 1 м при наклонном положении туловища, так как удержание последнего в наклонном состоянии требует более значительного статического напряжения мышц спины.

Определенная часть энергии, образовавшейся при химических реакциях, расходуется на преодоление сопротивлений движению со стороны растягиваемых во время движения мышц-антагонистов и эластичных тканей в суставах, на преодоление вязкого сопротивления деформации мышц и на преодоление инерции движущихся звеньев тела при изменениях направления движения. Отношение количества выполненной человеком механической работы, выраженное в калориях, к величине затрат энергии, также в калориях, называется энергетическим коэффициентом полезного действия.

Величина коэффициента полезного действия зависит от способа работы, ее темпа и состояния тренированности и утомления человека. Иногда величину коэффициента полезного действия используют для оценки качества рабочих приемов. Так, при изучении движений опиловки металла было установлено, что на каждый килограмм-сила-метр работы затрачивается 0,023 ккал, что соответствует коэффициенту полезного действия 1/[427 X 0,023] = 10,2
Этот сравнительно невысокий коэффициент полезного действия объясняется значительной статической работой при опиловке, требующей напряжения мышц туловища и ног для сохранения рабочей позы. При других видах работы коэффициент полезного действия может быть больше или меньше величины, найденной для опиловки металла. Ниже приведены величины коэффициента полезного действия для некоторых работ:
Подъем тяжестей. 8,4
Работа напильником. 10,2
Работа вертикальным рычагом (толкание) 14,0
Вращение рукоятки. 20,0
Езда на велосипеде . 30,0
Наибольшее значение, которого может достичь коэффициент полезного действия человеческого организма,— 30%. Эта величина достигается при выполнении хорошо освоенной, привычной работы с участием мускулатуры ног и туловища.

Величина коэффициента полезного действия работы в отдельных случаях позволяет установить более рациональные условия выполнения физической работы, в частности определить оптимальную скорость (темп), нагрузку, производительность работы. Большей частью величина энергетических трат на единицу продукции бывает наименьшей, а обратная ей величина коэффициента полезного действия — наибольшей при средних степенях скорости и нагрузки в середине периода работы, если она продолжается до утомления.

Изменение коэффициента полезного действия в отдельных случаях, в частности, когда сравниваются однородные работы, различающиеся лишь способом выполнения, может служить одним из критериев для оценки рациональности некоторых конкретных сторон труда. Однако этот критерий для работающего человека ни в какой мере не имеет того определяющего и универсального значения, которым он обладает в оценке работы машины. В то время как в паровой машине только внешняя механическая работа является основным полезным эффектом превращений энергии, а остальная извлеченная из топлива энергия справедливо считается бесполезно потерянной, для организма человека полезна и та часть потребляемой энергии, которая идет не на внешнюю механическую работу, а на повышение жизнедеятельности клеток во время работы и на восстановление временно уменьшающейся работоспособности.

Более точным и универсальным критерием физиологической оценки рациональности конкретных рабочих приемов и отдельных движений является длительность поддержания высокого уровня работоспособности, что проявляется в увеличении производительности труда и в таком приспособлении физиологических функций, которое ведет к дальнейшему развитию физических и духовных способностей человека.

источник

Men’s Health. Журнал

Разбираться в таких величинах как КПД бензинового или дизельного ДВС — практически дело чести для каждого мужчины. Магические цифры 33% или 40% — могут стать серьезным поводом для жаркой дискуссии на целый вечер. Разобраться в КПД собственного организма обычно не хватает времени и желания, и, кстати, зря. Коэффициент полезного действия нашего организма напрямую зависит от того, как мы о нем заботимся, насколько хорошо понимаем и удовлетворяем его потребности.

На чем основывается жизнь? Правильно, на энергии! Энергия — это все! Все процессы, происходящие в нашем организме, нуждаются в энергии. Энергию мы получаем из продуктов питания. Углеводы, жиры и белки расщепляются в процессе метаболизма, снабжая организм строительным материалом и энергией. Основной вид топлива, который быстро и легко утилизируется организмом — это углеводы. Наряду с углеводами важнейшим источником энергии являются составные компоненты жиров — жирные кислоты.

Окисление жирных кислот обеспечивает почти половину потребности взрослого организма в энергии. Этот важный процесс («бета-окисление») происходит в энергетических фабриках клеток — в митохондриях. Кстати, на заметку любителям цифр: КПД митохондрий составляет 55%! Есть повод задуматься, насколько изобретения человека еще отстают от «изобретений» природы.

Для того чтобы «энергетические фабрики» организма исправно работали и поставляли достаточное количество энергии, должна быть налажена бесперебойная поставка топлива, т. е. жирных кислот. Именно за этот важный этап ответственен L- карнитин. Он является ключевым участником процесса транспорта жирных кислот в митохондрии.

По химическому строению L-карнитин — это аминокислота, вещество родственное витаминам группы В. L-карнитин в своей естественной форме присутствует практически во всех органах и тканях человека, причем в максимальных концентрациях там, где избыток энергии нужен для поддержания основных функций организма (мышцы, сердце, мозг, печень, почки). Потребность в L-карнитине для каждого индивидуальна и может меняться в зависимости от нагрузок. Потребление L-карнитина также увеличивается при стрессах и во время физических нагрузок. Недостаточное количество L-карнитина может вызывать различные заболевания.

Поддерживать необходимый уровень L-карнитина или восполнить его недостаток в напряженные периоды жизни поможет препарат Элькар отечественной фармацевтической компании «ПИК-ФАРМА».
Элькар представляет собой водный раствор L-карнитина для применения внутрь. Уникальность препарата заключается в том, что он не обладает побочными эффектами, и не вызывает привыкания.

Когда и кому следует применять Элькар? Элькар жизненно необходим, если:
• работа или учеба сопровождается повышенными нервно-психическими
нагрузками
;
текущий период жизни наполнен стрессовыми ситуациями;
• тренировки в зале или фитнес-центре стали приносить вместо удовольствия
• усталость;
грипп, ОРВИ или простуда никак не хотят «отцепляться»;
• выходные и отпуск проходят под лозунгом «Быстрее, выше, сильней!»;
• до пенсии осталось меньше 10 лет;
• налицо симптомы «энергетического голода» организма.
• Во всех этих случаях Элькар улучшит адаптационные возможности организма, повысит иммунитет, поможет побороть синдром хронической усталости и поспособствует
повышению работоспособности.

Особое внимание стоит уделить препарату Элькар людям, которые регулярно занимаются спортом, профессиональным или любительским. Во время интенсивных тренировок энергозатраты организма возрастают в разы. В этих случаях L-карнитин улучшает энергоснабжение организма, сжигает жир, укрепляет мышечную ткань.

Регулярный прием препарата Элькар приводит к увеличению мышечной силы и массы, улучшению усвояемости белков, витаминов и углеводов, повышению выносливости. С препаратом Элькар длительные тренировки будут проходить без заметного чувства усталости, как в профессиональном спорте, так и в фитнесе. Высокая эффективность и безопасность Элькара подтверждена научными исследованиями и многолетним опытом применения при различных состояниях и заболеваниях.

источник

Физические качества мышц

Содержание

Физические качества мышц [ править | править код ]

Сила мышц [ править | править код ]

Величина максимального напряжения, которую может развить мышца во время своего возбуждения, характеризует силу мышцы. Она зависит от массы мышцы, количества одновременно возбужденных волокон в мышце, от частоты нервных импульсов, поступающих во время напряжения к мышце. Чем больше масса мышцы, тем больше ее сила. Следовательно, силу мышц можно увеличить, увеличивая массу мышц. Поэтому любой юноша при условии правильной тренировки может достичь значительного развития скелетной мускулатуры. Занятия силовыми упражнениями следует начинать не ранее 14-15 лет.

Скорость сокращения мышцы определяется промежутком времени, за которое эта мышца способна сокращаться и расслабляться. Чем меньше промежуток времени, тем больше будет и скорость сокращения мышцы.

В мышечной системе имеются медленные и быстрые мышцы. К медленным мышцам относятся — мышцы спины, так же и икроножная мышца, к быстрым мышцам относятся мышцы кисти, шеи, руки, глаза. Скорость их движений зависит от силы и скорости сокращения мышц. Выносливость мышц — это способность мышц долгое время поддерживать заданный темп работы.

Тонус мышц это когда состояние мышцы постоянного незначительного напряжения. Тонус мышц позволяет сохранять осанку тела, тонические сокращения мышц живота позволяют удерживать органы внутри организма в определенном положении, а тонус не исчерченных мышц сосудов позволяет обеспечить необходимый диаметр сосудов, следовательно, и кровяное давление. Тонус мышц определяется их естественными свойствами и влиянием нервной системы. В состоянии покоя мышцы упруги и эластичны благодаря своему тургору. К мышцам постоянно поступают нервные импульсы. Они поддерживают незначительный тонус мышц, понижение которого отрицательно влияет на деятельность всего организма. Причиной понижения тонуса мышц могут быть отрицательные эмоции, нарушение режима дня, особенно недосыпание, переутомление, нехватка витаминов.

Работа мышц [ править | править код ]

Во время сокращения мышца выполняют механическую работу. Припомните из физики, как можно определить механическую работу? Величина внешней работы (А) определяется произведением величины силы (Р) на расстояние ее действия (8) или произведением массы (т) на высоту (Л). Например, если тяжелоатлет поднимает штангу, которая весит 100 кг на высоту 2 м, то выполненная им работа будет равняться: А = т • Н = 100 • 2 = 200 кг/м, или 1962 Дж или ньютонометра. 1 килограмм-сила равняется приблизительно 9,81 Ньютона.

Мышцы могут вести статическую или динамическую работу. Статическая работа это когда мышцы напрягаются, но при напряжении не сокращаются, например, при удержании определенного веса, и так же при определенной стойке или позиции тела, статическая работа обычно сильно утомляет, особенно подростков и детей. При динамической работе, (бег, плавание, ходьба, езда на велосипеде, спортивные игры и др.) мышцы по очереди то сокращаются, то расслабляются заменяя друг дружку. Динамическая работа меньше утомляет, потому что во время расслабления мышцы успевают отдохнуть. Каждая физическая работа характеризуется величиной нагрузки и скоростью ее выполнения. Опытами установлено, что у человека наиболее продуктивная физическая работа тогда, когда он работает со средней нагрузкой и в среднем темпе.

Показателем эффективности работы мышц является коэффициент полезного действия (КПД). Как известно из физики, этот показатель используют и для оценки эффективности работы любых двигателей. КПД является отношением выполненной механической работы (А) к общим энергетическим затратам (О), то есть:

Установлено, что КПД мышц человека может достигать 25—30 %. То есть только 30 % всей энергии сокращения мышц расходуется на механическую работу, а 70 % превращается в тепло. Кстати, у многих современных бензиновых и электрических двигателей КПД больше, чем у скелетных мышц. Но ни один из них не само восстанавливается и не работает непрерывно столько лет, как мышцы. Любая работа мышц сопровождается потерями определенного количества энергии, которая образуется при распаде и окислении органических соединений в основном углеводов. Для того что бы был процесс окисления, необходим кислород. Употребление кислорода зависит от мощности выполняемой работы. Чем больше мышц принимает участие в работе, тем больше кислорода им нужно. Конечными продуктами распада углеводов являются вода и углекислый газ. Кровь, поступающая к мышцам по кровеносным сосудам, снабжает работающие органы кислородом и питательными веществами и поглощает углекислый газ и другие продукты распада.

Утомление мышц [ править | править код ]

Выполнение продолжительной или интенсивной работы приводит к утомлению мышц и прекращению выполняемой работы. Время развития утомления зависит от характера труда. Проделайте такой опыт. Возьмите в руки гантели массой по 3 кг. Разведите руки с гантелями в стороны, поднимите руки их до уровня плеча и держите их в этом положении столько, сколько сможете. Вы убедитесь, что утомление при непрерывном статическом напряжении мышц развивается быстро. Значительно позже устают мышцы, если эти гантели поднимать и опускать. Такая ритмическая, динамическая работа дает возможность мышцам частично восстанавливать свою работоспособность в промежутках между сокращениями. Каковы причины утомления? При выполнении статической работы утомляются в первую очередь не сами мышцы, а нервные центры, которые регулируют работу этих мышц. И для поддержания физической работоспособности необходима что бы и нервная система так же могла поддерживать высокую работоспособность.

Уставание при динамической работе происходит по различным причинам. К основным из них относятся малое снабжение мышц кислородом, уменьшение образования энергии, или накопление продуктов распада.

Полезно или может вредно утомление? Казалось бы, что вредно. Для чего тогда утомлять мышцы? Но если смотреть с физиологической точки зрения, то утомление — это полезное явление, а вот переутомление, вредно. Почему же утомление полезно? Существует очень важная биологическая закономерность. Она заключается в том, что после окончания обусловившей утомление работы, в период отдыха, происходит не только восстановление работоспособности мышц, но даже ее увеличение. Это явление называют сверх восстановлением. Благодаря этому мышцы могут выполнять еще большую работу, чем до развития утомления. При этом новая усталость приведет к еще большему сверх восстановлению, а значит, и к большей работоспособности. Таким образом, без утомления невозможно повышение работоспособности мышц. Такая закономерность свойственна всем органам, тканям, в том числе и нервной. Но чрезвычайно длительная или же интенсивная работа может привести к переутомлению. При переутомлении исчерпываются энергетические ресурсы клетки, могут разрушаться ее органеллы, а то и сами клетки. Чтобы предотвратить переутомление, необходимо избегать без достаточной физической подготовки чрезмерных нагрузок. При появлении ощущения значительной усталости нужно отдохнуть. Чередование физических нагрузок и отдыха является одним из способов поддержания высокой работоспособности и предотвращения переутомления.

источник

Понравилась статья? Поделить с друзьями: